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Abstract: We consider the general Phase I linear programming problem with a
convexity constraint which can be written after some algebraic manipulation in the
form:

where P; are m-vectors satisfying |P;|=1. If feasible, von Neumann’s Center of
Gravity Algorithm generates a sequence t=1,2,... of approximate solutions
L Py =0, Tzt =1, 25 >0 which converges in the limit as ¢ —oo to a feasible
solution to the Phase I problem. We assume that all perturbed problems 2;‘ Pi;= I;,
Y z;=1, z; 2 0 are feasible for all |[b] < r where r > 0 is given. We apply this algorithm
to m 41 perturbed problems with right hand sides b =, i =1,2,...,m +1 to obtain an
exact solution to the unperturbed problem with =0 in T < 4r~3(m +1)® iterations.
Each iteration consists of m(n + 3)§ multiplications and additions where § is the non-
zero coefficient density.

Von Neumann® in 1948 proposed the first interior algorithm for solving a general
Phase I linear program with a convexity constraint, We will reproduce his proof that in
t < 1/p?* iterations an approximate solution ¥ P;z% = b* will be generated with ||b*] < p.
When applied to a perturbed problem b = b # 0, we will show that in ¢ < 4/p? iterations
an approximate solution will be generated with ||b* — b < p.

* verbal communication




Geometrically, in the m-space of the columns, since JP;} =1, all points P; lie on
the surface of the m-dimensional hypersphere S, of unit radius with center at the origin.
We are given r the radius of a concentric hypersphere S, C S, centered at the origin
that lies in the convex hull of the points P;. Thus r is a measure of how deeply the
origin is embedded in the set of b such that b=} P;z;, ;> 0, ¥ z; =1 is feasible.

To generate the m +1 different finite sequences (z*,5*) whose b* approach m +1
different points b, the bi are prechosen. Thesc can be the vertices of any simplex lying
in the set of feasible b that contains the origin as an interior point. We choose b to be
the vertices of an (m +1) equilateral simplez whose center is the origin and whose
vertices are located at distances r-m/(m+1) from the origin; for example the
coordinates of b may be chosen as follows:

(1) vt = [ 0 0 0 MG py]"
» =10 0 (m—1)ap_; —tuf
Bl = [0 0 —Gpe1 —Gp)T
B = [ 0 +42a, —Qpy —Op)”
2 o= @ -a —Qpey =0T
o= [ —a —Qpoy —Qp)T

where ¢; = G\

Figure 1. The Iterations Converge to ¢ Instead of the Origin 0.




When the i** sequence (2*,6*) (which is converging towards b‘) reaches a point
b* =5 such that [b'— ] < r/(m +1), the sequence for that i is terminated. Note that
all interior points of Ball; of radius p=r/(m+1) centered at b lie inside the
hypersphere S; C S,. We will show b* = b* C Ball; is attainable by the iterative process.
Associated with b is the approximate solution Z = z* that generated it. Thus an upper
bound to generate all m +1 approximate solutions (.7:‘,3‘) whose b’ lie strictly in m +1
p-balls centered at b* can be done in

2) iteration count < 4(m +1)/p* =4(m+1)*/r?, p=r/(m +1),

iterations. The final step is to generate the feasible solution Z to the Phase I problem by
finding weights X;>0, Z=Y )13 >0, Y%;=1, 1, Y P;z;=0. These weights
X = (A, A2+, Amya) are found by solving the (m + 1) x (m + 1) system

(3) ¥
>

0
1.

X
X
We will prove that this system has a unique solution X = (X;,...,An41) > 0.

We now describe the detailed steps of von Neumann’s algorithm for finding an
approximate solution to a perturbed problem ¥, P;z;= b, Yz;=1, £2>0 and give a
proof of the rate of convergence of the i-th sequence to some b = ' C B;. We initiate the
sequence of iterations by z = z! = (1,0,...,0), b! = P,. Inductively let z*~, 4*~! be the

t — 1 approximation. We use it to generate z*, b".

Y

Figure 2. The Von Neumann Iterative Step




Referring to Figure 2, P, is selected as that P; such that P; — b makes the sharpest
angle 0 with direction b — b*~!, namely

(4) s= ARGMAX |[b— 8" [P, - b)/1P; - Bll.

which can be carried out in m(n + 3) operations assuming |P;— b| is preprocessed. The
triangle b*-1, P,, b will be labeled ABC. The next approximation point H =b* is the
foot of perpendicular dropped from C onto the side AB of the triangle ABC. From the
figure, it is clear that H is a weighted convex combination of A and B with weights
proportional to cos 8, and cos 8, i.e.,

(5) b* = (cos 8,-b*! + cos 8, - P,)/(cos 8, + cos 8,),
z' = (cos 8,21 + cos 8, - U,)/(cos 8, + cos 6,),

where U, is the unit n vector with 1 in component s. cos 6, and cos 8, are computed by

— (8 -Pn)r(b‘—l _Pa)
"b _P:" "bt—l _Pa“ ’

_ (P._bt—l)'r(z_bt—l)
I TR

In order to determine the rate of convergence, note 6 < 7/2 because if, on the

(6) cos 8,

cos 0,

contrary, 6 > x/2 then all points P; would lie on one side of the hyperplane through b
orthogonal to bt~ ~-b implying that b = b' for the i-th sequence lies outside the convex
hull of the P;’s contrary to our assumption that all points located at a distance r or less
from the origin are in the set of feasible b (i.e., b by construction lies in the interior of
the set of feasible b C §; at a distance r/(m +1) from the boundary of S,. To simplify

the notation, let

Ay =01 =] and A, = 5 - B},
then
(7) A, = A,_, sin ,and A, = |P, —b| sin 8,
Therefore, noting 8, + 6, =8 < 7/2,

2 2
A A . .
(&) +{ip. ) =ow vt s

Recalling that diameter of the hypersphere is 2, it follows that 1P, - b <2 and
therefore for r = 2,3,...,t:

® (2) +(%) <




Comment: These inequalities can be made tighter when b =0 because |P,—b] =
|P,] =1. If so, (8) can be replaced by (A,/A,_,)>+ A? <1 and the development that
follows can be modified accordingly with the conclusion that if the von Neumann
iterative process is applied to the case b =0 instead of to b’ #0 an approximation b*
such that Jb*] < p can be attained in less that 1/p? iterations (instead of less than 4/p?
iterations).

Dividing (8) through by (A,)? for 7 =2,...,¢:

A/A) + (1/9) < (1/A)
(1/A,_2)2+ (1/4) < (I/At—1)2

(l/A)2 + (1/4) < (I/Az)2

Summing the above, canceling terms common to both sides of the sum and, recalling
A, <2, we have

(10) (/A > (1/4)+ (t-1)/4 = t/4

We conclude that t < 4/A? iterations, i.e. less than 4/p?® iterations would be needed for
the i** sequence to terminate by reaching b* = 3%, an interior point of the p-ball centered
at b'. Since p = r/(m +1) and there are (m + 1) p-balls, the upper bound on

(11) iteration count < 4(m +1)3/r.

What remains to show is that the 1) % (m+ 1) system (3) can be solved, that the

(m+
solution X is unique, and that A = (A, A,..., Ams1) > 0.

Existence of Separating Hyperplanes: Let y = (y;,92,--.,Y,») represent a general
point in R™. The equation of any hyperplane through the origin has the form a™y = 0.
This hyperplane is said to separate y! from y? if a™y! and a™y? are of opposite signs.

Fact 1. Each hyperplane (i)‘)Ty =0 for 1=1,2,...,m separates any point in the p-
ball centered at b from any point lying in any of the other p-balls centered at b,

Proof: Because of the m + 1 fold symmetry of the equilateral simplex it is sufficient
to demonstrate that the hyperplane (b™*1)Ty=0 separates 5™+' from 5™ where
[+t — ™+ < r/(m+1) and Jb™— 5™ < r/(m +1). The coordinates of b™+! and b™
defined by (1) are b™*'=(0,0,...,rm/(m+1))T and b™=(0,0,...,r¥m —1/\m +1,
—r/(m +1))T. The hyperplane (b™*+)Ty =0 reduces to (0,.. 1) y=Ury=0. Letting




pmH =™+l 4y where Ju]<r/(m+1), we have UL bmHi=fmtl=pmtliy >

rm/(m+1)—r/(m+1)>0 since Jup ) <r/(m+1). Letting b™= b™+v where
jv] < r/(m +1), we have U, b™ = b% + v, < —r/(m + 1)+ r/(m + 1) = 0. Thus U, p™+
and U,, b™ have opposite signs and so the hyperplane U,y = 0 separates b™+! from 5™.8

The Separating Hyperplanes Theorem below states conditions which imply that the
points 5%,b2,...,b™*! are the vertices of a simplex containing the origin in its interior.
That these conditions are satisfied follows from Fact 1.

Separating Hyperplanes Theorem: Given (1) that (6,52...,6™) are any (m+1)
vertices of an m-dimensional simplex T' containing the origin; given (2) that a'y = 0 for
t=1,2,...,m+1 are the equations of m 4+ 1 hyperplanes separating b from 7 for all
j#1% and given (3) any m+1 points b',5%,...,5™*! such that each hyperplane a'y =0
separates b' (on the same side as b) from b7 for all j#4; then 5',5%,...5™ are the

vertices T of an m-dimensional simplex that contains the origin as an interior point.

Proof: Since the simplex associated with T' contains the origin, we know there exist
i,' _>_ 0, X,' Z 0 such that

(13.1) T+ T =0
(13.2) Th+ Th=L
Before continuing with the proof, we show two more facts:
Fact 2, If (),)) is a feasible solution to (13.1), (13.2), then }; + X; > 0 for all .

Suppose, on the contrary, A, =0, X, =0 for some k. Multiply (13.1) on the left by af;
recall, by assumption, o*b? < 0 and a*b? < 0 for all j # k. We have

14.1 5B, Bk =

(14.1) TEL + @I =0

(14.2) 3PY +T X =1,
J#k I#k

implying, that (14.1) is the sum of non-negative terms (not all zero by (14.2), a
contradiction.

Fact 3. If T is any simplex containing the origin whose vertices ¢ are separated
from the remaining vertices j # by a hyperplane a'y =0 for each ¢, then T' contains
the origin strictly in its interior. §




Fact 3 follows from Fact 2 by setting b* = b for all i.

Continuing with the proof of the separating hyperplanes theorem, define 98 and
U m+1 by

~ -~ A 0
bt » ... b1
(15) 3= [ 1 1 1 :| ’ Unp1=| 0

Since T are the vertices of an m-dimensional simplex by assumption, it means that B is
non-singular and that BA = U1 can be solved for ) and, when solved, A > 0. From
Fact 3 it follows that A > 0. We view B as a feasible non-degenerate basis and consider

7 1
[bll] as an incoming non-basic column. We assert it will replace [bl] in the basis because,

on the contrary, if it replaced some column k # 1 in the basis, it would imply after the

replacement that both ), and Mare 0 in a feasible solution, contrary to Fact 2. By

1 1 1
conclusion that T' are the vertices of a simplex containing the origin. It then follows

replacing in turn basis columns [bz] by [b ], [1113] by [ba], etc., we arrive at the

from Fact 3 that this simplex contains the origin as a strictly interior point.§

This completes the proof that the (m + 1) sequences converge to m + 1 points b in
less than 4(m + 1)%/r? iterations. By applying the weights X; > 0 to the corresponding %,

we generate the exact solution z to the Phase I linear program.

One final remark: Just because an algorithm is polynomial does not necessarily
make it practical. The von Neumann algorithm has a poor convergence rate. Like the
simplex method each of its iterations requires about mné multiplications and additions
where 6 is the density of non-zero coefficients. When applied to (m +1) perturbed
problems as we do in this paper, we obtain an upper bound of 4(m +1)*/r? iterations
where 0 < r < 1. The moral of this tale is that, like gunners, we may do better by first
bracketing the target and then applying a final correction.
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